logarithmic cosine - определение. Что такое logarithmic cosine
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое logarithmic cosine - определение

FUNCTION OF AN ANGLE
TrigonometricFunctions; Trigonmetic function; Cosecant; Cotangent; Cosec; Logarithmic sine; Logarithmic tangent; Circular trigonometric function; Circular function; Trigonometric Function; Trigonometric Functions; Tangens; Trigonometry table; Tangent (trigonometry); Circular functions; Trig function; Trig functions; Sin-cos-tan; Sine-cosine-tangent; Sine cosine tangent; Sin cos tan; Cotangent (trigonometric function); Tangent (trigonometric function); Tan(); Wrapping functions; Wrapping function; Tangent function; Prosthaphaeresis formulas; Sin^2(x); Secant function; Tan(x); Trig ratios; Trigonometric function; Kosinus; Kotangens; Kosekans; Sekans; Secans; Cot(x); Sec(x); Cosec(x); Trigonometic functions; Angle function; Cotg; Secant (trigonometric function); Cos X; Csc(x); Tan (function); Tangent (function); Trigonometric ratio; Secant (trigonometry); Cosecant (trigonometry); Cosinus rectus; Vertical cosine; Secant and cosecant; Sinus secundus; Cotangens; Cosecans; Sinus rectus secundus; Sinus secundus arcus; Sine complement; Sinus complementi; Prosinus; Local cosine tree; Tan (trigonometry); Cot (trigonometry); Sec (trigonometry); Cosec (trigonometry); Csc (trigonometry); Cotan (trigonometry); Ctg (trigonometry); Tg (trigonometry); Tg (trigonometric function); Ctg (trigonometric function); Tangens complementi; Secans complementi; Tangent complement; Secant complement; Secans interior; Goniometric functions; Goniometric function; Angle functions; Natural cosine; Natural tangent; Natural cotangent; Natural secant; Natural cosecant; Logarithmic cosine; Logarithmic cotangent; Logarithmic secant; Logarithmic cosecant; Tan function; Sin. com.; Cos.; Sco (trigonometry); Sc (trigonometry); Cos. (trigonometry); Tan. (trigonometry); T (trigonometry); Tang. (trigonometry); Tc (trigonometry); Cotangent function; Cosecant function; Sincostan
  • proportional]].
  • A [[Lissajous curve]], a figure formed with a trigonometry-based function.
  • 2{{pi}} − ''θ''}} in the four quadrants.<br>'''Bottom:''' Graph of sine function versus angle. Angles from the top panel are identified.
  • k}} is large is called the [[Gibbs phenomenon]]
  • <math>\cos(\theta)</math> and <math>\sin(\theta)</math> are the real and imaginary part of <math>e^{i\theta}</math> respectively.
  • An animation of the [[additive synthesis]] of a [[square wave]] with an increasing number of harmonics
  • Animation for the approximation of cosine via Taylor polynomials.
  • <math>\cos(x)</math> together with the first Taylor polynomials <math>p_n(x)=\sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!}</math>
  • Taylor polynomial]] of degree 7 (pink) for a full cycle centered on the origin.
  • thumb
  • thumb
  • thumb
  • thumb
  • thumb
  • thumb
  • x}}-axis starting from the origin.
  • Cotangent (dotted)}}
– [{{filepath:trigonometric_functions_derivation_animation.svg}} animation]
  • ''b''}}}}.
  • sec ''θ''}}, respectively.
  • The [[unit circle]], with some points labeled with their cosine and sine (in this order), and the corresponding angles in radians and degrees.

Sheaf of logarithmic differential forms         
MEROMORPHIC DIFFERENTIAL FORM WITH POLES OF A CERTAIN KIND
Logarithmic Kähler differentials; Sheaf of logarithmic differential forms; Logarithmic differential form; Logarithmic Kähler differential
In algebraic geometry, the sheaf of logarithmic differential p-forms \Omega^p_X(\log D) on a smooth projective variety X along a smooth divisor D = \sum D_j is defined and fits into the exact sequence of locally free sheaves:
Logarithmic form         
MEROMORPHIC DIFFERENTIAL FORM WITH POLES OF A CERTAIN KIND
Logarithmic Kähler differentials; Sheaf of logarithmic differential forms; Logarithmic differential form; Logarithmic Kähler differential
In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne.
Logarithmic integral function         
SPECIAL FUNCTION DEFINED AS THE ANTIDERIVATIVE OF 1∕㏑(𝑥)
Offset logarithmic integral; Logarithmic integral; Log integral; Li(x); Li function; Li integral; Logarithmic Integral
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance.

Википедия

Trigonometric functions

In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used. Each of these six trigonometric functions has a corresponding inverse function, and an analog among the hyperbolic functions.

The oldest definitions of trigonometric functions, related to right-angle triangles, define them only for acute angles. To extend the sine and cosine functions to functions whose domain is the whole real line, geometrical definitions using the standard unit circle (i.e., a circle with radius 1 unit) are often used; then the domain of the other functions is the real line with some isolated points removed. Modern definitions express trigonometric functions as infinite series or as solutions of differential equations. This allows extending the domain of sine and cosine functions to the whole complex plane, and the domain of the other trigonometric functions to the complex plane with some isolated points removed.